
Design and Implementation of a CAN-USB

Interface for Networked Embedded

Constantin Abaceoae

Faculty of Automatic Control and Computer Engineering

“Gheorghe Asachi” Technical University of Iasi

Iasi, Romania
abaceoae.constantin@ac.tuiasi.ro

Mihai Postolache

Faculty of Automatic Control and Computer Engineering

“Gheorghe Asachi” Technical University of Iasi

Iasi, Romania

mpostol@ac.tuiasi.ro

Abstract— Controller Area Network (CAN) is the most

used protocol for intra-vehicle communication between

Electronic Control Units (ECUs) for decades. Moreover, there

are several implementations of industrial networks built on top

of CAN, (i.e. CANopen and DeviceNet) that expanded even

more its area of application to almost any industrial

automation field. The growing needs for data in today’s

modern and safe applications led to CAN Flexible Data Rate

(CAN FD) in order to increase the network throughput and

pushed the data field of the CAN frames beyond the 1Mbps

limit of the high speed CAN chips. A low cost CAN-USB

interface application for dual CAN bus network monitoring,

diagnose and maintenance is proposed which can be easily

ported on any member of the ARM Cortex-M microcontroller

family with built-in CAN or CAN-FD communication.

Keywords— Controller Area Network, CAN-USB adapter,

embedded software application.

I. INTRODUCTION

Since its invention by Robert Bosch in 1983 and its
official launching in 1986 [1], the Controller Area Network
(CAN) communication protocol has passed through several
upgrading (CAN2.0 in 1991) and standardization (as
ISO1898 in 1993) steps. A new step ahead was done in 2012
with the new variant CAN Flexible Data Rate (CAN FD),
which can extend the data field of a frame from 8 to 64 bytes
and has an option to switch to an increased data bitrate, while
still remaining compatible with CAN 2.0 frames [2].

Fig. 1. Use of an off-the-shelf USB-CAN adapter for CAN bus monitoring

After the first standalone CAN chips produced by Intel
and Philips in 1987, basic or full CAN controllers were
included as internal peripherals by almost any family of

microcontrollers for both automotive and industrial markets.
Commercial CAN-USB adapters (Fig.1) for connecting
mobile devices to CAN are available as black-box solutions
that lack flexibility and cannot be customized for application
specific requirements.

CAN-USB adapters can easy be implemented using
general purpose microcontrollers connected to standalone
CAN and USB controllers in a cost-effective embedded
system. 8-bit microcontrollers like AT89S51 [3] or
AT89C52 [4] get connected to external USB controllers like
PDIUSBD12 [3] and FT245BM [4], respectively, and make
use of the standalone CAN controller SJA1000 in order to
obtain a custom low-cost USB-CAN adapter (Fig. 2).

Fig. 2. USB-CAN adapter using standalone USB and CAN bus controllers

In [5] a design of a CAN-USB convertor is proposed,
allowing the USB port to be used for the control of CAN
devices. A Graphical User Interface (GUI) was developed
for testing purposes, based on a custom designed Data Link
Library (DLL) Application Programming Interface (API) of
virtual serial COM ports.

Our approach (Fig. 3) is to use a 32-bit ARM Cortex-M
series microcontroller and its on-chip CAN and USB
peripherals to implement a powerful USB-CAN adapter and
custom firmware that can be easily ported on a large variety
of boards provided with these two communication interfaces.
In contrast to [5], the host PC runs a GUI developed using
standard DLL libraries provided by the host Windows
operating system to demonstrate the CAN-USB gateway
easy to use and its simple extension to fit application specific
requirements by customization.

A CAN-USB adapter is a useful tool acting as a gateway
for any device that has an USB port. It can be used for
several applications like CAN bus monitoring or CAN nodes
remote configuration, measurement and calibration as
presented in [6].

CAN/USB adapter

General
purpose

microcontroller

Standalone

CAN
controller

Standalone

USB
adapter

CAN/USB
adapter

USB

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 123

Fig. 3. USB-CAN adapter using integrated USB and CAN bus peripherals

In section II the custom firmware running on an
STM32F4DISCOVERY development board is presented
together with used resources and schematic diagrams, in
section III the implementation and features of the graphical
application running on the host computer are described and
in the final part experimental tests and results are discussed
and conclusions are drawn.

II. THE CUSTOM FIRMWARE APPLICATION

The development board STM32F4DISCOVERY features
an STM32F407 ARM Cortex-M4 168MHz microcontroller
core which is connected to dual CAN channels via two
external high speed MCP2552 transceivers [7]. The custom
firmware was developed using Eclipse GNU ARM GCC
toolchain and the STM32CubeMX graphical software
configurator tool was used to generate initialization C code
for the on-chip peripherals using graphical wizards.

Fig. 4. 10μs time-driven scheduler tick handler

A timer tick is raised every 10μs and act as a time-driven
task scheduler. Two tasks are then scheduled each one being
activated every 1ms and 2ms, respectively (Fig.4).

A. USB messages dispatching

The 1ms task handles messages received via USB and is
responsible for local configuration settings changes as well
as with the one shot or cyclic message transmission over
CAN, as requested via USB by the graphical user interface.

The command USB message received by the board has
the format shown in Fig. 5. There is a command specifier,
followed by specific data fields of corresponding lengths.

Fig. 5. Command message format of USB received data

The first command type is the CAN configuration
settings allowing a number of two CAN channels to be
initialized with proper parameter values in order to achieve a
specific bit length (and CAN speed): a prescaler divider
value to set the time quantum (TQ) derived from the internal
oscillator (at 42MHz) as shown in (1) and values for bit
segments BS1 and BS2 in number of time quanta to establish
CAN BaudRate (2) as well as the value of the Adjust Jump
Width (AJW) number of time quanta used by the CAN
controller for hardware resynchronization.

   

Command
specifier
(1 byte)

Command payload (0 - 16 bytes)

CAN channel
settings
(0x01)

Channel
number

(#0 or #1)

Prescaler
value

(2 bytes)

BS1
(1 byte)

BS2
(1 byte)

AJW
(1 byte)

Add CAN
message

(0x02)

STD/IDE,
channel #
(1 byte)

CAN ID
(2 or 4
bytes)

DLC
(1 byte)

CAN
data

(0-8 bytes)

Cyclic
period

(2 bytes)

Add message
filter

(0x04)

STD/IDE,
channel #
(1 byte)

CAN ID
(2 or 4
bytes)

Delete CAN
message

(0x03)

STD/IDE,
channel #
(1 byte)

CAN ID
(2 or 4
bytes)

Delete
message filter

(0x05)

STD/IDE,
channel #
(1 byte)

CAN ID
(2 or 4
bytes)

Delete all
message filters

(0x06)

Channel #
(0 or 1)

Connect
(0x00)

CAN/USB adapter

32-bit ARM
 Cortex M
industrial

microcontroller

On-chip

CAN
peripheral

On-chip

USB
peripheral

124

   

The second type of command follows the CAN message
structure using a standard or extended CAN identifier (CAN
ID), the Data Length Code (DLC) field and the CAN
payload data of maximum 8 bytes. If the last field is 0 the
command will be considered as a one-shot message,
otherwise that value gives the number of milliseconds to wait
before message has to be periodically retransmitted and the
message is put on a waiting list.

The 1ms task decrements the counters of the cyclic
messages on the waiting list and activates a flag for those
ready to be sent. In the main loop of the application all the
flags of the cyclic messages are continuously checked and
associated CAN message transmission is triggered for
transmission when it is the case.

If the CAN ID of the message is already in the waiting
list, its content will be updated. A status flag is used to lock a
message entry in the waiting list while its content is updated.
One or all messages can be deleted from the waiting list if
the value 0x03 is used as command specifier.

Finally, the last three command messages applies or
removes a mask for received CAN messages in order to filter
the specified CAN ID based on a list of incoming CAN
messages that should not be stored and reported.

Fig. 6. Data/Status/ message format of USB transmit buffer

Received CAN messages are put in a cyclic queue by the
CAN interrupt handler, from which the 2ms task takes at
most three of them at once to be copied in the USB buffer
using Direct Memory Access (DMA). At the end of DMA
transfer the buffer content (Fig. 6) is automatically sent to the
graphical interface via USB.

B. CAN message buffering and processing

CAN messages are received in the CAN interrupt handler
that applies the active filters and put the allowed messages
into a circular queue. The 2ms task copy a number of
maximum three messages using a fast DMA transfer from

the queue into the USB buffer (at most 62 bytes), then an
USB interrupt is raised at the end of DMA transfer and the
status of the circular queue is checked and updated.

Status/Error message codes are sent as response to the
USB received command messages or when internal errors
occurs while receiving and processing CAN messages.

III. THE CAN-SPY GRAPHICAL INTERFACE

A graphical interface running on a host Windows PC was
designed and implemented in Eclipse using with MinGW
GCC and regular Win32 API library functions from the
user32.dll and comctl32.dll dynamic link libraries. A
WinMain loop is used for receiving, processing and
transmitting messages to the main and child windows and
their control objects like buttons, edit boxes, and check
boxes. The main window of the graphical interface is
presented in Fig. 7.

Fig. 7. The main window of the graphical interface

The host PC application was interfaced with the
development board for USB communication using the
Winusb.dll dynamic link library API functions [8].

Configuration, connect and CAN message create, edit,
and delete buttons are provided to establish a connection to
the development board and to set its CAN controller
communication parameters and handle CAN messages in the
Transmit window.

All actions in the application can only be done if the
application is connected to the development board. This is
possible by pressing the Connect button, available in the
interface.

When a button is pressed, a Windows command message
(WM_COMMAND) is initiated on the branch for the button
with the corresponding id in which the connection function is
called. The connection is possible by calling the

Data/Status
specifier
(1 byte)

Data/Status payload (5 - 16 bytes)

Data
message

(0x01)

of CAN
messages

(1-3)

Data message payload
(1, 2 or 3 CAN objects)

STD/IDE,
channel #
(1 byte)

DLC
(1 byte)

CAN ID
(2 or 4
bytes)

CAN data
(0 – 8 bytes)

Status
message

(0x02)

Status /
Error code

(1 byte)

Timestamp
(2 bytes)

125

RawHID_Open() function (Fig. 8). This function receives the
VID (vendor ID) and PID (product ID) parameters, which
must have the same values as the corresponding parameters
set by firmware on the USB controller of the development
board.

Fig. 8. Connecting the target board as Human Interface Device

Status and error messages are displayed in pop-up
windows and bring information about the way a command
was received and processed on the connected target board.
Also, error messages can notify the user about unwanted
events like changing the CAN bus error management status
(Active Error, Pasive Error or BusOff status, heavy CAN bus
conditions, wrong BaudRate), or indicate overrun conditions
on both the target USB-CAN adapter or the host PC
graphical interface.

Fig. 9. CAN channel configuration window

A number of two CAN channels can be individually
configured as in the child window shown in Fig. 9. The CAN
bus BaudRate for the selected channel can be calculated from
the prescaler, TQ_BS1 and TQ_BS2 values, according to
relation (2).

Then the Initialization button has to be pressed to have
the new communication parameters encapsulated and sent
over USB as presented before in Fig. 5.

Fig. 10. New message window and transmit section

When a new CAN message is added a child window
shown in Fig. 10 is created to retrieve the channel number,
CAN ID, DLC and data fields, as well as the recurrence
interval expressed in milliseconds. Input data is retrieved to
be packaged in a buffer that is automatically set in the
Transmit graphical section as ready for transmission.

On the left side of each message in Transmit section there
is a checkbox (SEND column). Each time it is checked, the
message in the transmission buffer is automatically sent to
USB.

Also, when the Edit Message button is pressed, the
selected message in the transmit section can be updated. The
user is allowed to delete a specific message or even all
messages that are entered in the Transmit message viewing
section.

On the other hand, messages received on USB are
retrieved and processed using several threads (Fig. 11). A
reception thread deals with downloading messages from the
USB buffer and storing them in a circular queue. The large
queue size ensures the safety access for retrieving messages
by the other threads.

Two other threads pop the messages from queue in
parallel and display them in the Receive graphical section
(Fig. 12).

Two threads were used when displaying CAN messages
because if we run the application on a computer with lower
computing power and we want to receive messages at a rate
of 1ms, a single thread would not cope and the display would
be far behind.

126

Fig. 11. WinMain multithreading processing

Fig. 12. CAN message Receive graphical section

Pressing the Filter Messages button opens a new window
(Fig. 13), where one can select which type of ID to be
rejected (standard or expanded), the rejected ID, and if a
previous filter is canceled on that ID.

Fig. 13. Filter settings window

Single ID or a range of IDs is accepted in both Add ID
and Remove ID edit boxes of the same ID type: standard or
extended.

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS

The proposed CAN-USB adapter operation was tested for
both Transmit and Receive way of operation. For this
purpose an off-the-shelf CANcaseXL USB-CAN module
from Vector was used while PCAN-View from Peak-System
was running on another PC.

As it is shown in Fig.14, a message sent from our
developed CAN-SPY graphical interface was received in
PCAN-View with the correct ID, data and cycle time.

Fig. 14. Receiving a CAN message with PCAN-View

To demonstrate reception operation at 1Mbps with our
graphical interface a number of 3 messages were entered in
PCAN-view, as shown in Fig.15.

Fig. 15. Testing the Receive operation – messages transmitted with PCAN-

View

The corresponding received messages displayed in the
Receive section of the CAN-SPY graphical interface are
illustrated in Fig. 16.

Fig. 16. Testing the Receive operation – messages transmitted with PCAN-

View

Compared to the commercial versions of USB-CAN
adapters an advantage is that it does not require installation.
When copying the executable to any PC, it can run without
having to first install drivers or certain frameworks. The
development board connected to any PC was seen as a
Human Interface Device, being automatically recognized by
the operating system or any application that interacts with
this module.

Also the software implemented for the
STM32F4Discovery board can be directly ported to any
other STM32 board, and with few changes to any other
ARM Cortex-M series of microcontroller core.

127

A minimum rate of 1ms is allowed for a burst of
messages incoming on the CAN bus in order to be displayed
in real time on the Receive graphical section. Depending on
the CAN communication bitrate and the network load,
messages on CAN bus can occur much faster, but the
graphical interface would not handle a larger number of
messages timely. An advantage of our USB-CAN adapter
software is that it allows user customizations such that
selected CAN messages can be monitored for a specific data
field only, or a log file in a user defined format may be
created locally on a SD card or onto a disk by the host PC
interface.

REFERENCES

[1] ISO, ISO 11898-1:2015 – Road vehicles – Controller area network
(CAN) – Part 1: Data link layer and physical signalling, International
Organization for Standardization, 2015

[2] G. Cena, I. C. Bertolotti, T. Hu, A. Valenzano, “CAN XR: CAN with
extensible in-frame Reply”, IEEE 14th International Conference on
Industrial Informatics (INDIN), pp. 1198 – 120, 2016

[3] Y. Luo, “The Design of CAN/USB Embedded Adapter”, 3rd
International Conference on Mechanical and Electronics Engineering,
Hefei, 2011, in Mechanical and Electronics Engineering III, PTS 1-5,
Book Series: Applied Mechanics and Materials, Volume: 130-134,
pp. 3938 – 3941, 2012

[4] M. Liping, Z. Weiguo, “Design and implementation of USB and
CAN communication adapter”, Proceedings of International
Conference on Intelligent Computation and Industrial Application,
Hong Kong, vol.III, pp. 387 – 390, 2011

[5] W.-C. Hsu, S.-T. Liu, “Design and Implementation of CAN-
USB Converter Based on ARM7 Serial Protocol API”, International
Symposium on Computer, Consumer and Control, Taichung, pp.
333 – 336, 2012

[6] M. Postolache, C. Spiridon, “XCPI – A Measurement and Calibration
Software Tool for Networked and Embedded Control Systems”,
Proceedings of the 14th International Conference on Systems Theory
and Control, Sinaia, pp. 397 – 402, 2010

[7] ST Microelectronics, Discovery kit with STM32F407VG MCU, User
Manual (UM1472), 2017

[8] Axelson, USB Complete: The Developer's Guide, 5th Edition,
LakeView Research LLC, Madison, 2015

128

